Mutable vs. Immutable Objects in Python πŸ”„πŸ”’

Mutable vs. Immutable Objects in Python πŸ”„πŸ”’

In Python, mutability determines whether an object’s value can be changed after creation. This is crucial for understanding how variables behave. πŸ€”


Immutable Objects πŸ”’

  • Cannot be modified once created. Any “change” creates a new object. πŸ†•
  • Types: int, float, str, bool, tuple, frozenset, bytes, NoneType.

Example 1: Strings (Immutable) πŸ’¬

Python

s = "hello"
print(id(s))  # Original memory address: e.g., 140245678945600

s += " world"  # "Modification" creates a NEW string
print(id(s))  # New address: e.g., 140245678946880 (different!)

Example 2: Tuples (Immutable) πŸ“¦

Python

t = (1, 2, [3, 4])
print(t)       # (1, 2, [3, 4])
# t[0] = 99    # TypeError: tuple does not support item assignment
# But note: The inner list is mutable!
t[2].append(5)  # The tuple's structure hasn't changed (still holds same list)
print(t)        # (1, 2, [3, 4, 5])

Mutable Objects πŸ“

  • Can be modified in-place without creating a new object. ✍️
  • Types: list, dict, set, bytearray.

Example 1: Lists (Mutable) πŸ“‹

Python

colors = ["red", "green"]
print(id(colors))  # Original address: e.g., 140245678947392

colors.append("blue")  # Modified IN-PLACE
print(colors)          # ["red", "green", "blue"]
print(id(colors))      # Same address: 140245678947392

Example 2: Dictionaries (Mutable) πŸ“š

Python

person = {"name": "Alice", "age": 30}
print(id(person))  # Original address: e.g., 140245678946112

person["age"] = 31  # Change value in-place
person["city"] = "Paris"  # Add new key-value pair
print(person)       # {'name': 'Alice', 'age': 31, 'city': 'Paris'}
print(id(person))   # Same address: 140245678946112

Key Implications: πŸ€”

Equality vs. Identity βš–οΈπŸ†”

  • == checks if values are equal.
  • is checks if they refer to the exact same object in memory.

Python

a = [1, 2]  # Mutable
b = [1, 2]  # Different object
print(a == b)  # True (same value)
print(a is b)  # False (different memory)

x = "abc"    # Immutable
y = "abc"    # Python may reuse same object (interning)
print(x is y) # Often True (due to interning for small, immutable objects)

Function Arguments πŸ”„

  • Mutable objects passed to functions can be changed globally. 🌍
  • Immutable objects behave like “copies” inside functions. πŸ“„

Python

def update_list(lst):
    lst.append(99)  # Affects original list

def try_update_string(s):
    s += "!"        # Creates new string (no effect outside)

my_list = [1, 2]
my_str = "Hello"

update_list(my_list)
try_update_string(my_str)

print(my_list)  # [1, 2, 99] (changed)
print(my_str)   # "Hello" (unchanged)

Summary Table: πŸ“Š

PropertyMutableImmutable
Can modify?Yes (in-place)No (new object on change)
Memory addressSame after modificationChanges after “modification”
Exampleslist, dict, setint, str, tuple
Use CaseDynamic collectionsConstants, safe data

Export to Sheets

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *