difference between positional and keyword arguments

1. Positional Arguments

How they work: The arguments you pass are matched to the function’s parameters based solely on their order (i.e., their position). The first argument is assigned to the first parameter, the second to the second, and so on.

Example:

python

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name}.")

# Positional argument passing
describe_pet('hamster', 'Harry')

Output:

text

I have a hamster.
My hamster's name is Harry.
  • 'hamster' (1st argument) is assigned to animal_type (1st parameter).
  • 'Harry' (2nd argument) is assigned to pet_name (2nd parameter).

What happens if you mess up the order?
You get logical errors that can be hard to debug.

python

describe_pet('Harry', 'hamster') # Oops! Wrong order.

Output:

text

I have a Harry.
My Harry's name is hamster. # This is nonsense.

2. Keyword Arguments

How they work: You explicitly name each argument when you call the function using the syntax parameter_name=value. This means the order of the arguments does not matter.

Example:

python

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name}.")

# Keyword argument passing
describe_pet(animal_type='hamster', pet_name='Harry')
describe_pet(pet_name='Harry', animal_type='hamster') # Order doesn't matter!

Output (for both calls):

text

I have a hamster.
My hamster's name is Harry.

Why use them?

  1. Clarity: It’s immediately clear what each value represents.
  2. Flexibility: You can specify arguments in any order.
  3. Skipping Defaults: They are essential when you want to use a default value for an early parameter but provide an argument for a later one.

3. Mixing Positional and Keyword Arguments

You can mix both styles in a single function call, but there is one strict rule:

Positional arguments must come before any keyword arguments.

Example:

python

def describe_pet(animal_type, pet_name, age):
    """Display information about a pet."""
    print(f"\nI have a {animal_type} named {pet_name}. It is {age} years old.")

# Valid: Two positional, one keyword
describe_pet('hamster', 'Harry', age=3)

# Valid: One positional, two keyword
describe_pet('hamster', pet_name='Harry', age=3)
describe_pet('hamster', age=3, pet_name='Harry') # Order of keywords doesn't matter

# INVALID: Keyword before positional
# describe_pet(animal_type='hamster', 'Harry', 3) # This will cause a SyntaxError

4. Practical Example: The print() Function

The built-in print() function is a perfect example of these concepts in action. Its signature looks conceptually like this:
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

  • *objects: Takes any number of positional arguments.
  • sependfileflush: Are all keyword-only parameters with default values.

python

# Using only positional arguments
print('Hello', 'World', '!') # Output: Hello World !

# Using a mix of positional and keyword arguments
print('Hello', 'World', sep='-') # Output: Hello-World
print('Hello', end=' ') # Changes the end character from newline to a space
print('World')           # Output: Hello World (on the same line)

Summary & Key Differences

FeaturePositional ArgumentsKeyword Arguments
BasisOrder (Position)Name (Keyword)
Syntaxfunction(value1, value2)function(param1=value1, param2=value2)
Order ImportanceCritical. Wrong order causes errors.Irrelevant. Order doesn’t matter.
ClarityLess clear. You must know the parameter order.Very clear. Acts as built-in documentation.
Use CaseFor required parameters where the meaning is obvious (e.g., add(x, y)).For optional parameters, parameters with defaults, or to improve readability.
Rule in a CallMust be listed before keyword arguments.Must be listed after positional arguments.

Best Practice: For functions with more than two or three parameters, or parameters that aren’t immediately obvious, use keyword arguments to make your code self-documenting and much easier to read and maintain.

Similar Posts

  • Python Statistics Module

    Python Statistics Module: Complete Methods Guide with Examples Here’s a detailed explanation of each method in the Python statistics module with 3 practical examples for each: 1. Measures of Central Tendency mean() – Arithmetic Average python import statistics as stats # Example 1: Basic mean calculation data1 = [1, 2, 3, 4, 5] result1 = stats.mean(data1) print(f”Mean of…

  • Demo And course Content

    What is Python? Python is a high-level, interpreted, and general-purpose programming language known for its simplicity and readability. It supports multiple programming paradigms, including: Python’s design philosophy emphasizes code readability (using indentation instead of braces) and developer productivity. History of Python Fun Fact: Python is named after Monty Python’s Flying Circus (a British comedy show), not the snake! 🐍🎭 Top Career Paths After Learning Core Python 🐍…

  • Examples of Python Exceptions

    Comprehensive Examples of Python Exceptions Here are examples of common Python exceptions with simple programs: 1. SyntaxError 2. IndentationError 3. NameError 4. TypeError 5. ValueError 6. IndexError 7. KeyError 8. ZeroDivisionError 9. FileNotFoundError 10. PermissionError 11. ImportError 12. AttributeError 13. RuntimeError 14. RecursionError 15. KeyboardInterrupt 16. MemoryError 17. OverflowError 18. StopIteration 19. AssertionError 20. UnboundLocalError…

  • Python Installation Guide: Easy Steps for Windows, macOS, and Linux

    Installing Python is a straightforward process, and it can be done on various operating systems like Windows, macOS, and Linux. Below are step-by-step instructions for installing Python on each platform. 1. Installing Python on Windows Step 1: Download Python Step 2: Run the Installer Step 3: Verify Installation If Python is installed correctly, it will…

  • Tuples

    In Python, a tuple is an ordered, immutable (unchangeable) collection of elements. Tuples are similar to lists, but unlike lists, they cannot be modified after creation (no adding, removing, or changing elements). Key Features of Tuples: Syntax: Tuples are defined using parentheses () (or without any brackets in some cases). python my_tuple = (1, 2, 3, “hello”) or (without…

  • Generalization vs. Specialization

    Object-Oriented Programming: Generalization vs. Specialization Introduction Inheritance in OOP serves two primary purposes: Let’s explore these concepts with clear examples. 1. Specialization (Extending Functionality) Specialization involves creating a new class that inherits all features from a parent class and then adds new, specific features. The core idea is reusability—you build upon what already exists. Key Principle: Child Class =…

Leave a Reply

Your email address will not be published. Required fields are marked *