Decorators in Python

Decorators in Python

A decorator is a function that modifies the behavior of another function without permanently modifying it. Decorators are a powerful tool that use closure functions.

Basic Concept

A decorator:

  1. Takes a function as input
  2. Returns a modified function (or a new function)
  3. Uses the @decorator_name syntax

Simple Example

python

def simple_decorator(func):
    def wrapper():
        print("Something is happening before the function is called.")
        func()
        print("Something is happening after the function is called.")
    return wrapper

@simple_decorator
def say_hello():
    print("Hello!")

# Using the decorated function
say_hello()

Output:

text

Something is happening before the function is called.
Hello!
Something is happening after the function is called.

Equivalent Without @ Syntax

python

def say_hello():
    print("Hello!")

# Manual decoration
decorated_hello = simple_decorator(say_hello)
decorated_hello()

Decorator for Functions with Arguments

python

def smart_divide(func):
    def wrapper(a, b):
        print(f"Dividing {a} by {b}")
        if b == 0:
            print("Cannot divide by zero!")
            return
        return func(a, b)
    return wrapper

@smart_divide
def divide(a, b):
    return a / b

print(divide(10, 2))  # Output: Dividing 10 by 2 → 5.0
print(divide(10, 0))  # Output: Dividing 10 by 0 → Cannot divide by zero!

Decorator with Any Number of Arguments

python

def logger(func):
    def wrapper(*args, **kwargs):
        print(f"Calling {func.__name__} with args: {args}, kwargs: {kwargs}")
        result = func(*args, **kwargs)
        print(f"{func.__name__} returned: {result}")
        return result
    return wrapper

@logger
def add(a, b):
    return a + b

@logger
def multiply(x, y, z=1):
    return x * y * z

add(3, 5)
multiply(2, 3, z=4)

Output:

text

Calling add with args: (3, 5), kwargs: {}
add returned: 8
Calling multiply with args: (2, 3), kwargs: {'z': 4}
multiply returned: 24

Practical Example: Timing Function Execution

python

import time

def timer(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds")
        return result
    return wrapper

@timer
def slow_function():
    time.sleep(2)
    return "Done!"

slow_function()  # Output: slow_function executed in 2.0002 seconds

Chaining Decorators

python

def bold(func):
    def wrapper():
        return "<b>" + func() + "</b>"
    return wrapper

def italic(func):
    def wrapper():
        return "<i>" + func() + "</i>"
    return wrapper

@bold
@italic
def hello():
    return "Hello World"

print(hello())  # Output: <b><i>Hello World</i></b>

Decorator with Arguments

python

def repeat(n):
    def decorator(func):
        def wrapper(*args, **kwargs):
            for i in range(n):
                print(f"Call {i+1}:")
                result = func(*args, **kwargs)
            return result
        return wrapper
    return decorator

@repeat(3)
def greet(name):
    print(f"Hello, {name}!")

greet("Alice")

Output:

text

Call 1:
Hello, Alice!
Call 2:
Hello, Alice!
Call 3:
Hello, Alice!

Why Use Decorators?

  • Code Reuse: Avoid repetitive code
  • Separation of Concerns: Keep business logic separate from cross-cutting concerns
  • Readability: Makes code more readable and maintainable
  • Extensibility: Easy to add/remove functionality

Decorators are widely used in web frameworks (like Flask, Django), testing, logging, and many other areas of Python programming!

Similar Posts

  • Tuples

    In Python, a tuple is an ordered, immutable (unchangeable) collection of elements. Tuples are similar to lists, but unlike lists, they cannot be modified after creation (no adding, removing, or changing elements). Key Features of Tuples: Syntax: Tuples are defined using parentheses () (or without any brackets in some cases). python my_tuple = (1, 2, 3, “hello”) or (without…

  • Functions Returning Functions

    Understanding Functions Returning Functions In Python, functions can return other functions, which is a powerful feature of functional programming. Basic Example python def outer(): def inner(): print(“Welcome!”) return inner # Return the inner function (without calling it) # Calling outer() returns the inner function f = outer() # f now refers to the inner function…

  • Case Conversion Methods in Python

    Case Conversion Methods in Python (Syntax + Examples) Python provides several built-in string methods to convert text between different cases (uppercase, lowercase, title case, etc.). Below are the key methods with syntax and examples: 1. upper() – Convert to Uppercase Purpose: Converts all characters in a string to uppercase.Syntax: python string.upper() Examples: python text = “Hello, World!”…

  • Python Modules: Creation and Usage Guide

    Python Modules: Creation and Usage Guide What are Modules in Python? Modules are simply Python files (with a .py extension) that contain Python code, including: They help you organize your code into logical units and promote code reusability. Creating a Module 1. Basic Module Creation Create a file named mymodule.py: python # mymodule.py def greet(name): return f”Hello, {name}!”…

  • Indexing and Slicing in Python Lists Read

    Indexing and Slicing in Python Lists Read Indexing and slicing are fundamental operations to access and extract elements from a list in Python. 1. Indexing (Accessing Single Elements) Example 1: Basic Indexing python fruits = [“apple”, “banana”, “cherry”, “date”, “fig”] # Positive indexing print(fruits[0]) # “apple” (1st element) print(fruits[2]) # “cherry” (3rd element) # Negative indexing print(fruits[-1]) # “fig”…

Leave a Reply

Your email address will not be published. Required fields are marked *