Special Sequences in Python

Special Sequences in Python Regular Expressions – Detailed Explanation

Special sequences are escape sequences that represent specific character types or positions in regex patterns.

1. \A – Start of String Anchor

Description: Matches only at the absolute start of the string (unaffected by re.MULTILINE flag)

Example 1: Match only at absolute beginning

python

import re

text = "Start here\nStart again"
result = re.findall(r'\AStart', text)
print(result)  # ['Start'] - Only matches at very beginning

Example 2: Comparison with ^ in multiline mode

python

text = "First line\nSecond line"
result_caret = re.findall(r'^.*', text, re.MULTILINE)
result_A = re.findall(r'\A.*', text)
print("^ matches:", result_caret)  # ['First line', 'Second line']
print(r"\A matches:", result_A)    # ['First line'] - Only first line

2. \Z – End of String Anchor

Description: Matches only at the absolute end of the string (unaffected by re.MULTILINE flag)

Example 1: Match only at absolute end

python

text = "Line one\nLine two\nEnd"
result = re.findall(r'End\Z', text)
print(result)  # ['End'] - Only matches at very end

Example 2: Validate file extension at end

python

filenames = ["document.txt", "image.jpg", "script.py.backup"]
valid_extensions = [f for f in filenames if re.search(r'\.txt\Z', f)]
print(valid_extensions)  # ['document.txt'] - Only exact .txt at end

3. \n – Newline Character

Description: Matches a newline character (line feed)

Example 1: Count lines in text

python

text = "Line 1\nLine 2\nLine 3\nLine 4"
line_count = len(re.findall(r'\n', text)) + 1
print("Number of lines:", line_count)  # 4

Example 2: Split on newlines

python

text = "Hello\nWorld\nPython\nProgramming"
lines = re.split(r'\n', text)
print(lines)  # ['Hello', 'World', 'Python', 'Programming']

4. \t – Tab Character

Description: Matches a tab character

Example 1: Find tab-separated values

python

text = "Name\tAge\tCity\nJohn\t25\tNYC\nJane\t30\tLA"
rows = re.split(r'\n', text)
for row in rows:
    columns = re.split(r'\t', row)
    print(columns)
# Output: ['Name', 'Age', 'City'], ['John', '25', 'NYC'], ['Jane', '30', 'LA']

Example 2: Replace tabs with spaces

python

text = "Column1\tColumn2\tColumn3"
spaced_text = re.sub(r'\t', '    ', text)  # Replace tabs with 4 spaces
print(spaced_text)  # "Column1    Column2    Column3"

5. \r – Carriage Return

Description: Matches a carriage return character

Example 1: Handle Windows line endings

python

text = "Line 1\r\nLine 2\r\nLine 3"
# Remove carriage returns
clean_text = re.sub(r'\r', '', text)
print(repr(clean_text))  # 'Line 1\nLine 2\nLine 3'

Example 2: Count carriage returns

python

text = "Hello\rWorld\r\nTest\r"
cr_count = len(re.findall(r'\r', text))
print("Carriage returns:", cr_count)  # 3

6. \f – Form Feed

Description: Matches a form feed character (rarely used in modern text)

Example 1: Find form feed characters

python

text = "Page 1\fPage 2\fPage 3"
page_breaks = re.findall(r'\f', text)
print("Form feeds found:", len(page_breaks))  # 2

Example 2: Split on form feeds

python

text = "Section 1\fSection 2\fSection 3"
sections = re.split(r'\f', text)
print(sections)  # ['Section 1', 'Section 2', 'Section 3']

7. \v – Vertical Tab

Description: Matches a vertical tab character (rarely used)

Example 1: Detect vertical tabs

python

text = "Row1\vRow2\vRow3"
vertical_tabs = re.findall(r'\v', text)
print("Vertical tabs:", len(vertical_tabs))  # 2

Example 2: Replace vertical tabs

python

text = "Item1\vItem2\vItem3"
clean_text = re.sub(r'\v', '\n', text)  # Replace with newlines
print(clean_text)  # "Item1\nItem2\nItem3"

Practical Examples with Multiple Special Sequences

Example: Normalize different line endings

python

def normalize_line_endings(text):
    """Convert all line endings to Unix style (\n)"""
    # Replace Windows (\r\n) and old Mac (\r) line endings
    text = re.sub(r'\r\n', '\n', text)  # Windows to Unix
    text = re.sub(r'\r', '\n', text)    # Old Mac to Unix
    return text

mixed_text = "Line 1\r\nLine 2\nLine 3\rLine 4"
normalized = normalize_line_endings(mixed_text)
print(repr(normalized))  # 'Line 1\nLine 2\nLine 3\nLine 4'

Example: Parse CSV-like data with various whitespace

python

def parse_data(text):
    """Parse data with mixed whitespace separators"""
    # Replace various whitespace with single comma
    text = re.sub(r'[\t\v]+', ',', text)  # Tabs and vertical tabs to commas
    text = re.sub(r'[ ]+', ',', text)     # Multiple spaces to commas
    lines = re.split(r'\n', text)         # Split into lines
    return [line.split(',') for line in lines if line.strip()]

data_text = "Name Age  City\nJohn  25\tNYC\nJane  30  LA"
parsed = parse_data(data_text)
print(parsed)  # [['Name', 'Age', 'City'], ['John', '25', 'NYC'], ['Jane', '30', 'LA']]

Example: Validate complete string patterns

python

def is_valid_pattern(text, pattern):
    """Check if entire text matches pattern from start to finish"""
    return bool(re.fullmatch(pattern, text))

# Validate email (entire string must match)
emails = ["user@example.com", "invalid@", "@domain.com"]
email_pattern = r'\A[\w\.-]+@[\w\.-]+\.\w+\Z'

for email in emails:
    valid = is_valid_pattern(email, email_pattern)
    print(f"'{email}': {valid}")
# Output: 'user@example.com': True, 'invalid@': False, '@domain.com': False

Example: Extract content between specific markers

python

def extract_sections(text, start_marker, end_marker):
    """Extract content between specific markers"""
    pattern = fr'{re.escape(start_marker)}(.*?){re.escape(end_marker)}'
    return re.findall(pattern, text, re.DOTALL)

text = """
[START_SECTION]
This is section 1
With multiple lines
[END_SECTION]

[START_SECTION]
Section 2 content
[END_SECTION]
"""

sections = extract_sections(text, "[START_SECTION]", "[END_SECTION]")
for i, section in enumerate(sections, 1):
    print(f"Section {i}:\n{section.strip()}\n")

Important Notes

  1. String vs. Pattern: Special sequences work in regex patterns, not in ordinary strings
  2. Raw strings: Always use raw strings (r'pattern') to avoid interpretation of backslashes
  3. Multiline mode\A and \Z are unaffected by re.MULTILINE, unlike ^ and $
  4. Platform differences: Line ending characters vary by platform (\n on Unix, \r\n on Windows, \r on old Mac)

python

# Platform-aware line ending handling
def get_line_endings(text):
    """Detect the predominant line ending style"""
    crlf_count = len(re.findall(r'\r\n', text))
    lf_count = len(re.findall(r'(?<!\r)\n', text))  # \n not preceded by \r
    cr_count = len(re.findall(r'\r(?!\n)', text))   # \r not followed by \n
    
    if crlf_count > max(lf_count, cr_count):
        return 'Windows (\\r\\n)'
    elif lf_count > max(crlf_count, cr_count):
        return 'Unix (\\n)'
    elif cr_count > max(crlf_count, lf_count):
        return 'Old Mac (\\r)'
    else:
        return 'Mixed or none'

text = "Line 1\r\nLine 2\nLine 3\rLine 4"
print("Line ending style:", get_line_endings(text))

Similar Posts

Leave a Reply

Your email address will not be published. Required fields are marked *