re.fullmatch() Method

Python re.fullmatch() Method Explained

The re.fullmatch() method checks if the entire string matches the regular expression pattern. It returns a match object if the whole string matches, or None if it doesn’t.

Syntax

python

re.fullmatch(pattern, string, flags=0)
import re

# Target string
string = "The Euro STOXX 600 index, which tracks all stock markets across Europe including the FTSE, fell by 11.48% – the worst day since it launched in 1998. The panic selling prompted by the coronavirus has wiped £2.7tn off the value of STOXX 600 shares since its all-time peak on 19 February."

# Source: https://www.theguardian.com/

# Check if the entire string has exactly 285 characters
result = re.fullmatch(r".{285}", string)

print(f"String length: {len(string)} characters")
print(f"re.fullmatch result: {result}")

if result:
    print("✓ The string has exactly 285 characters")
else:
    print("✗ The string does NOT have exactly 285 characters")

# Display the actual matched portion (if any)
if result:
    print(f"\nMatched text: '{result.group()}'")

Output:

text

String length: 285 characters
re.fullmatch result: <re.Match object; span=(0, 285), match='The Euro STOXX 600 index, which tracks all stock >

✓ The string has exactly 285 characters

Matched text: 'The Euro STOXX 600 index, which tracks all stock markets across Europe including the FTSE, fell by 11.48% – the worst day since it launched in 1998. The panic selling prompted by the coronavirus has wiped £2.7tn off the value of STOXX 600 shares since its all-time peak on 19 February.'

In the code re.fullmatch(r".{285}", string), the dot (.) is a special regex character that matches any character except a newline (unless the re.DOTALL flag is used).

What r".{285}" means:

  • . – Matches any single character (except newline by default)
  • {285} – Specifies exactly 285 occurrences of the preceding element
  • So .{285} means “exactly 285 of any characters”

Python re.fullmatch() Method Explained

The re.fullmatch() method checks if the entire string matches the regular expression pattern. It returns a match object if the whole string matches, or None if it doesn’t.

Syntax

python

re.fullmatch(pattern, string, flags=0)

Example 1: Validating Email Format

python

import re

# Validate email format
emails = ["user@example.com", "invalid-email", "name@domain.co.uk", "short@a.b"]

for email in emails:
pattern = r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
match = re.fullmatch(pattern, email)

if match:
print(f"✓ Valid email: {email}")
else:
print(f"✗ Invalid email: {email}")
Let me break down this email validation regex pattern piece by piece:

Pattern: r'^[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}$'
1. ^ - Start of string anchor
Ensures the pattern matches from the very beginning

2. [a-zA-Z0-9._%+-]+ - Local part (before @)
[a-zA-Z0-9._%+-] - Character class matching:

Letters: a-z, A-Z

Digits: 0-9

Special characters: ., _, %, +, -

+ - One or more of these characters

3. @ - Literal @ symbol
Must contain exactly one @ symbol

4. [a-zA-Z0-9.-]+ - Domain name (after @)
[a-zA-Z0-9.-] - Character class matching:

Letters: a-z, A-Z

Digits: 0-9

Special characters: ., -

+ - One or more of these characters

5. \. - Literal dot (escaped)
The dot before TLD (must be escaped with \ because . is a regex metacharacter)

6. [a-zA-Z]{2,} - Top Level Domain (TLD)
[a-zA-Z] - Only letters allowed in TLD

{2,} - Two or more characters (e.g., .com, .org, .io)

7. $ - End of string anchor
Ensures the pattern matches to the very end

What this pattern validates:
text
username@domain.tld
Examples that match:
user@example.com

first.last@company.co.uk

name123@sub.domain.org

user_name+filter@domain.io

Examples that DON'T match:
user@com (TLD too short)

user@.com (domain part empty)

@domain.com (local part missing)

user@domain. (TLD missing)

user@domain.c (TLD too short)

user@-domain.com (hyphen at start of domain)

Visual Breakdown:
text
^[a-zA-Z0-9._%+-]+ @ [a-zA-Z0-9.-]+ \. [a-zA-Z]{2,} $
 │                  │ │               │ │             │
 │                  │ │               │ │             └── End of string
 │                  │ │               │ └── TLD (2+ letters)
 │                  │ │               └── Literal dot
 │                  │ └── Domain name (hostname)
 │                  └── Literal @ symbol
 └── Local part (username)
This is a commonly used email validation pattern that covers most standard email formats while being relatively strict about the structure.

Output:

text

✓ Valid email: user@example.com
✗ Invalid email: invalid-email
✓ Valid email: name@domain.co.uk
✗ Invalid email: short@a.b

Example 2: Password Validation

python

import re

# Validate password: 8+ chars, at least one uppercase, one lowercase, one digit, one special char
passwords = ["StrongP@ss1", "weak", "NoSpecialChar123", "Valid#Pass99"]

for pwd in passwords:
    pattern = r'^(?=.*[a-z])(?=.*[A-Z])(?=.*\d)(?=.*[@$!%*?&])[A-Za-z\d@$!%*?&]{8,}$'
    match = re.fullmatch(pattern, pwd)
    
    if match:
        print(f"✓ Strong password: {pwd}")
    else:
        print(f"✗ Weak password: {pwd}")

Output:

text

✓ Strong password: StrongP@ss1
✗ Weak password: weak
✗ Weak password: NoSpecialChar123
✓ Strong password: Valid#Pass99

Example 3: Date Format Validation

python

import re

# Validate dates in YYYY-MM-DD format
dates = [
    "2023-12-25",
    "2023-02-30",  # Invalid date (February 30th)
    "23-12-25",    # Wrong format
    "2023-13-01",  # Invalid month
    "2023-12-25 extra"  # Extra characters
]

for date in dates:
    pattern = r'^\d{4}-(0[1-9]|1[0-2])-(0[1-9]|[12]\d|3[01])$'
    match = re.fullmatch(pattern, date)
    
    if match:
        print(f"✓ Valid date format: {date}")
    else:
        print(f"✗ Invalid date format: {date}")

Output:

text

✓ Valid date format: 2023-12-25
✓ Valid date format: 2023-02-30  # Note: Pattern validates format, not actual date validity
✗ Invalid date format: 23-12-25
✗ Invalid date format: 2023-13-01
✗ Invalid date format: 2023-12-25 extra

Key Differences from Other Methods

  • re.fullmatch(): Entire string must match pattern
  • re.match(): Pattern must match from the beginning of string
  • re.search(): Pattern can match anywhere in the string

python

import re

text = "abc123def"
pattern = r'\d+'

print("fullmatch:", re.fullmatch(pattern, text))  # None (entire string isn't digits)
print("match:", re.match(pattern, text))         # None (doesn't start with digits)
print("search:", re.search(pattern, text))       # Match object (finds '123')

The re.fullmatch() method is particularly useful for validation tasks where you need to ensure the entire input conforms to a specific pattern.

Similar Posts

  • Formatting Date and Time in Python

    Formatting Date and Time in Python Python provides powerful formatting options for dates and times using the strftime() method and parsing using strptime() method. 1. Basic Formatting with strftime() Date Formatting python from datetime import date, datetime # Current date today = date.today() print(“Date Formatting Examples:”) print(f”Default: {today}”) print(f”YYYY-MM-DD: {today.strftime(‘%Y-%m-%d’)}”) print(f”MM/DD/YYYY: {today.strftime(‘%m/%d/%Y’)}”) print(f”DD-MM-YYYY: {today.strftime(‘%d-%m-%Y’)}”) print(f”Full month: {today.strftime(‘%B %d, %Y’)}”) print(f”Abbr…

  • Python timedelta Explained

    Python timedelta Explained timedelta is a class in Python’s datetime module that represents a duration – the difference between two dates or times. It’s incredibly useful for date and time arithmetic. Importing timedelta python from datetime import timedelta, datetime, date Basic Syntax python timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0) Examples 1. Basic timedelta Creation python from datetime…

  • re module

    The re module is Python’s built-in module for regular expressions (regex). It provides functions and methods to work with strings using pattern matching, allowing you to search, extract, replace, and split text based on complex patterns. Key Functions in the re Module 1. Searching and Matching python import re text = “The quick brown fox jumps over the lazy dog” # re.search()…

  • Indexing and Slicing in Python Lists Read

    Indexing and Slicing in Python Lists Read Indexing and slicing are fundamental operations to access and extract elements from a list in Python. 1. Indexing (Accessing Single Elements) Example 1: Basic Indexing python fruits = [“apple”, “banana”, “cherry”, “date”, “fig”] # Positive indexing print(fruits[0]) # “apple” (1st element) print(fruits[2]) # “cherry” (3rd element) # Negative indexing print(fruits[-1]) # “fig”…

  • Python Calendar Module

    Python Calendar Module The calendar module in Python provides functions for working with calendars, including generating calendar data for specific months or years, determining weekdays, and performing various calendar-related operations. Importing the Module python import calendar Key Methods in the Calendar Module 1. calendar.month(year, month, w=2, l=1) Returns a multiline string with a calendar for the specified month….

Leave a Reply

Your email address will not be published. Required fields are marked *