difference between positional and keyword arguments

1. Positional Arguments

How they work: The arguments you pass are matched to the function’s parameters based solely on their order (i.e., their position). The first argument is assigned to the first parameter, the second to the second, and so on.

Example:

python

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name}.")

# Positional argument passing
describe_pet('hamster', 'Harry')

Output:

text

I have a hamster.
My hamster's name is Harry.
  • 'hamster' (1st argument) is assigned to animal_type (1st parameter).
  • 'Harry' (2nd argument) is assigned to pet_name (2nd parameter).

What happens if you mess up the order?
You get logical errors that can be hard to debug.

python

describe_pet('Harry', 'hamster') # Oops! Wrong order.

Output:

text

I have a Harry.
My Harry's name is hamster. # This is nonsense.

2. Keyword Arguments

How they work: You explicitly name each argument when you call the function using the syntax parameter_name=value. This means the order of the arguments does not matter.

Example:

python

def describe_pet(animal_type, pet_name):
    """Display information about a pet."""
    print(f"\nI have a {animal_type}.")
    print(f"My {animal_type}'s name is {pet_name}.")

# Keyword argument passing
describe_pet(animal_type='hamster', pet_name='Harry')
describe_pet(pet_name='Harry', animal_type='hamster') # Order doesn't matter!

Output (for both calls):

text

I have a hamster.
My hamster's name is Harry.

Why use them?

  1. Clarity: It’s immediately clear what each value represents.
  2. Flexibility: You can specify arguments in any order.
  3. Skipping Defaults: They are essential when you want to use a default value for an early parameter but provide an argument for a later one.

3. Mixing Positional and Keyword Arguments

You can mix both styles in a single function call, but there is one strict rule:

Positional arguments must come before any keyword arguments.

Example:

python

def describe_pet(animal_type, pet_name, age):
    """Display information about a pet."""
    print(f"\nI have a {animal_type} named {pet_name}. It is {age} years old.")

# Valid: Two positional, one keyword
describe_pet('hamster', 'Harry', age=3)

# Valid: One positional, two keyword
describe_pet('hamster', pet_name='Harry', age=3)
describe_pet('hamster', age=3, pet_name='Harry') # Order of keywords doesn't matter

# INVALID: Keyword before positional
# describe_pet(animal_type='hamster', 'Harry', 3) # This will cause a SyntaxError

4. Practical Example: The print() Function

The built-in print() function is a perfect example of these concepts in action. Its signature looks conceptually like this:
print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

  • *objects: Takes any number of positional arguments.
  • sependfileflush: Are all keyword-only parameters with default values.

python

# Using only positional arguments
print('Hello', 'World', '!') # Output: Hello World !

# Using a mix of positional and keyword arguments
print('Hello', 'World', sep='-') # Output: Hello-World
print('Hello', end=' ') # Changes the end character from newline to a space
print('World')           # Output: Hello World (on the same line)

Summary & Key Differences

FeaturePositional ArgumentsKeyword Arguments
BasisOrder (Position)Name (Keyword)
Syntaxfunction(value1, value2)function(param1=value1, param2=value2)
Order ImportanceCritical. Wrong order causes errors.Irrelevant. Order doesn’t matter.
ClarityLess clear. You must know the parameter order.Very clear. Acts as built-in documentation.
Use CaseFor required parameters where the meaning is obvious (e.g., add(x, y)).For optional parameters, parameters with defaults, or to improve readability.
Rule in a CallMust be listed before keyword arguments.Must be listed after positional arguments.

Best Practice: For functions with more than two or three parameters, or parameters that aren’t immediately obvious, use keyword arguments to make your code self-documenting and much easier to read and maintain.

Similar Posts

  •  List Comprehensions 

    List Comprehensions in Python (Basic) with Examples List comprehensions provide a concise way to create lists in Python. They are more readable and often faster than using loops. Basic Syntax: python [expression for item in iterable if condition] Example 1: Simple List Comprehension Create a list of squares from 0 to 9. Using Loop: python…

  • Combined Character Classes

    Combined Character Classes Explained with Examples 1. [a-zA-Z0-9_] – Word characters (same as \w) Description: Matches any letter (lowercase or uppercase), any digit, or underscore Example 1: Extract all word characters from text python import re text = “User_name123! Email: test@example.com” result = re.findall(r'[a-zA-Z0-9_]’, text) print(result) # [‘U’, ‘s’, ‘e’, ‘r’, ‘_’, ‘n’, ‘a’, ‘m’, ‘e’, ‘1’, ‘2’,…

  • Random Module?

    What is the Random Module? The random module in Python is used to generate pseudo-random numbers. It’s perfect for: Random Module Methods with Examples 1. random() – Random float between 0.0 and 1.0 Generates a random floating-point number between 0.0 (inclusive) and 1.0 (exclusive). python import random # Example 1: Basic random float print(random.random()) # Output: 0.5488135079477204 # Example…

  • Case Conversion Methods in Python

    Case Conversion Methods in Python (Syntax + Examples) Python provides several built-in string methods to convert text between different cases (uppercase, lowercase, title case, etc.). Below are the key methods with syntax and examples: 1. upper() – Convert to Uppercase Purpose: Converts all characters in a string to uppercase.Syntax: python string.upper() Examples: python text = “Hello, World!”…

  • math Module

    The math module in Python is a built-in module that provides access to standard mathematical functions and constants. It’s designed for use with complex mathematical operations that aren’t natively available with Python’s basic arithmetic operators (+, -, *, /). Key Features of the math Module The math module covers a wide range of mathematical categories,…

Leave a Reply

Your email address will not be published. Required fields are marked *