• re.subn()

    Python re.subn() Method Explained The re.subn() method is similar to re.sub() but with one key difference: it returns a tuple containing both the modified string and the number of substitutions made. This is useful when you need to know how many replacements occurred. Syntax python re.subn(pattern, repl, string, count=0, flags=0) Returns: (modified_string, number_of_substitutions) Example 1: Basic Usage with Count Tracking python import re…

  • re.sub()

    Python re.sub() Method Explained The re.sub() method is used for searching and replacing text patterns in strings. It’s one of the most powerful regex methods for text processing. Syntax python re.sub(pattern, repl, string, count=0, flags=0) Example 1: Basic Text Replacement python import re text = “The color of the sky is blue. My favorite color is blue too.” #…

  • re.split()

    Python re.split() Method Explained The re.split() method splits a string by the occurrences of a pattern. It’s like the built-in str.split() but much more powerful because you can use regex patterns. Syntax python re.split(pattern, string, maxsplit=0, flags=0) Example 1: Splitting by Multiple Delimiters python import retext1=”The re.split() method splits a string by the occurrences of a pattern. It’s like…

  • re.findall()

    Python re.findall() Method Explained The re.findall() method returns all non-overlapping matches of a pattern in a string as a list of strings or tuples. Syntax python re.findall(pattern, string, flags=0) Key Characteristics: Example 1: Extracting All Numbers from Text python import retext = “I bought 5 apples for $3.50, 2 bananas for $1.25, and 10 oranges for $7.80.”result = re.findall(r”\d{3}”,…

  • re.fullmatch() Method

    Python re.fullmatch() Method Explained The re.fullmatch() method checks if the entire string matches the regular expression pattern. It returns a match object if the whole string matches, or None if it doesn’t. Syntax python re.fullmatch(pattern, string, flags=0) import re # Target string string = “The Euro STOXX 600 index, which tracks all stock markets across Europe including the FTSE, fell by…

  • Special Sequences in Python

    Special Sequences in Python Regular Expressions – Detailed Explanation Special sequences are escape sequences that represent specific character types or positions in regex patterns. 1. \A – Start of String Anchor Description: Matches only at the absolute start of the string (unaffected by re.MULTILINE flag) Example 1: Match only at absolute beginning python import re text = “Start here\nStart…

  • Escape Sequences in Python

    Escape Sequences in Python Regular Expressions – Detailed Explanation Escape sequences are used to match literal characters that would otherwise be interpreted as special regex metacharacters. 1. \\ – Backslash Description: Matches a literal backslash character Example 1: Matching file paths with backslashes python import re text = “C:\\Windows\\System32 D:\\Program Files\\” result = re.findall(r'[A-Z]:\\\w+’, text) print(result) #…

  • Alternation and Grouping

    Complete List of Alternation and Grouping in Python Regular Expressions Grouping Constructs Capturing Groups Pattern Description Example (…) Capturing group (abc) (?P<name>…) Named capturing group (?P<word>\w+) \1, \2, etc. Backreferences to groups (a)\1 matches “aa” (?P=name) Named backreference (?P<word>\w+) (?P=word) Non-Capturing Groups Pattern Description Example (?:…) Non-capturing group (?:abc)+ (?i:…) Case-insensitive group (?i:hello) (?s:…) DOTALL group (. matches…

  • Quantifiers (Repetition)

    Quantifiers (Repetition) in Python Regular Expressions – Detailed Explanation Basic Quantifiers 1. * – 0 or more occurrences (Greedy) Description: Matches the preceding element zero or more times Example 1: Match zero or more digits python import re text = “123 4567 89″ result = re.findall(r’\d*’, text) print(result) # [‘123’, ”, ‘4567’, ”, ’89’, ”] # Matches…