Programs

Weekly Wages


hours = input('Enter Hours separated by spaces:')
wage = int(input('Enter Hourly Wage:'))

hours = hours.split() #hours.split(",")

week_hours = [int(x) for x in hours]

total_hrs = sum(week_hours)

if total_hrs <= 40:
    tot_wages = total_hrs * wage
else:
    overtime = total_hrs - 40
    tot_wages = 40 * wage + overtime * wage * 1.5

print('Total Wages:', tot_wages)

Removing Duplicates


L1 = [3, 5, 7, 9, 3, 6, 5, 2, 3, 7, 10]

res = []

for element in L1:
    if element not in res:
        res.append(element)

print(res)

even ,odd


nums = [4, 8, 3, 5, 10, 7, 2, 9, 13, 6]

odd = [x for x in nums if x % 2 != 0]

even = [x for x in nums if x % 2 == 0]

print('Odd:', odd)

print('Even:', even)

Palindrome 



lst = [5, 4, 3, 3, 4, 5]

rev = lst[::-1]

if lst == rev:
    print('Yes Palindrome')
else:
    print('Not Plaindrome')
    

Rotate list

lst = [1, 2, 3, 4, 5, 6]

n = int(input('Enter Number of Rotations:'))

rotated = lst[n:] + lst[:n]

print('Rotated List:', rotated)

Shuffle a List


import random as rd

lst = [1, 2, 3, 4, 5, 6]

rd.shuffle(lst)

print('Shuffled List:', lst)

Python random Module Explained with Examples

The random module in Python provides functions for generating pseudo-random numbers and performing random operations. Here’s a detailed explanation with three examples for each important method:

Basic Random Number Generation

1. random.random()

Returns a random float between 0.0 and 1.0

python

import random

# Example 1: Basic random float
print(random.random())  # e.g., 0.5488135039273248

# Example 2: Using in a calculation
probability = random.random()
if probability > 0.7:
    print("High probability event")

# Example 3: Scaling the result
scaled = random.random() * 100
print(f"Scaled value: {scaled}")

2. random.uniform(a, b)

Returns a random float between a and b

python

# Example 1: Random temperature between 15.0 and 25.0
temp = random.uniform(15.0, 25.0)
print(f"Temperature: {temp:.1f}°C")

# Example 2: Random coordinate in 2D space
x = random.uniform(-10, 10)
y = random.uniform(-10, 10)
print(f"Coordinate: ({x:.2f}, {y:.2f})")

# Example 3: Random price between 9.99 and 99.99
price = random.uniform(9.99, 99.99)
print(f"Price: ${price:.2f}")

3. random.randint(a, b)

Returns a random integer between a and b (inclusive)

python

# Example 1: Dice roll
dice = random.randint(1, 6)
print(f"You rolled a {dice}")

# Example 2: Random age between 18 and 65
age = random.randint(18, 65)
print(f"Random age: {age}")

# Example 3: Lottery number between 1 and 49
lottery = random.randint(1, 49)
print(f"Lottery number: {lottery}")

Sequence Operations

4. random.choice(seq)

Returns a random element from a non-empty sequence

python

colors = ['red', 'green', 'blue', 'yellow', 'black']

# Example 1: Random color selection
print(f"Today's color: {random.choice(colors)}")

# Example 2: Random direction
directions = ['north', 'south', 'east', 'west']
print(f"Go {random.choice(directions)}")

# Example 3: Random playing card
cards = ['Ace', '2', '3', 'King', 'Queen', 'Jack']
print(f"You drew: {random.choice(cards)}")

5. random.choices(population, weights=None, k=1)

Returns a k-sized list of elements chosen with replacement

python

# Example 1: Multiple random colors with weights
print(random.choices(colors, weights=[10, 5, 5, 3, 1], k=3))

# Example 2: Simulating dice rolls
print(f"5 dice rolls: {random.choices(range(1,7), k=5)}")

# Example 3: Lottery numbers (with possible duplicates)
print(f"Lottery numbers: {random.choices(range(1,50), k=6)}")

6. random.sample(population, k)

Returns a k-length list of unique elements chosen without replacement

python

# Example 1: Lottery numbers (no duplicates)
print(f"Unique lottery numbers: {random.sample(range(1,50), 6)}")

# Example 2: Random team selection
players = ['Alice', 'Bob', 'Charlie', 'David', 'Eve']
team = random.sample(players, 2)
print(f"Team members: {team}")

# Example 3: Random password characters
chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*'
password = ''.join(random.sample(chars, 8))
print(f"Random password: {password}")

7. random.shuffle(x)

Shuffles a sequence in place

python

# Example 1: Shuffling a deck of cards
deck = list(range(1, 53))
random.shuffle(deck)
print(f"Shuffled deck: {deck[:5]}...")

# Example 2: Shuffling a quiz question order
questions = ['Q1', 'Q2', 'Q3', 'Q4', 'Q5']
random.shuffle(questions)
print(f"Question order: {questions}")

# Example 3: Shuffling a playlist
songs = ['Song1', 'Song2', 'Song3', 'Song4', 'Song5']
random.shuffle(songs)
print(f"Playlist order: {songs}")

List Permutation


import itertools as it

lst = ['A', 'B', 'C', 'D']

perms = it.permutations(lst, r=2)

perm_list = list(perms)

print('Permutations')

for t in perm_list:
    print(t)

    

 Mean – Median – Mode

import statistics as st

lst = [6, 8, 4, 9, 3, 10, 8, 11, 5, 7, 8, 4, 2]

mean = st.mean(lst)

median = st.median(lst)

mode = st.mode(lst)

print('Mean:', mean)
print('Median:', median)
print('Mode:', mode)

Python statistics Module Explained with Examples

The statistics module provides functions for mathematical statistics calculations on numeric data. It’s part of Python’s standard library and is useful for basic statistical operations.

Importing the Module

python

import statistics

Measures of Central Tendency

1. statistics.mean(data)

Calculates the arithmetic mean (average) of data.

python

# Example 1: Basic mean calculation
grades = [85, 90, 78, 92, 88]
avg_grade = statistics.mean(grades)
print(f"Average grade: {avg_grade}")  # Average grade: 86.6

# Example 2: Mean of temperatures
temps = [22.5, 23.0, 21.8, 24.2, 22.0]
avg_temp = statistics.mean(temps)
print(f"Average temperature: {avg_temp:.1f}°C")  # Average temperature: 22.7°C

# Example 3: Mean with empty data (raises error)
try:
    print(statistics.mean([]))
except statistics.StatisticsError as e:
    print(f"Error: {e}")  # Error: mean requires at least one data point

2. statistics.median(data)

Calculates the median (middle value) of data.

python

# Example 1: Basic median with odd number of elements
salaries = [45000, 52000, 48000, 62000, 55000]
median_salary = statistics.median(salaries)
print(f"Median salary: ${median_salary}")  # Median salary: $52000

# Example 2: Median with even number of elements
house_prices = [325000, 285000, 410000, 380000]
median_price = statistics.median(house_prices)
print(f"Median house price: ${median_price}")  # Median house price: $352500.0

# Example 3: Median with unsorted data
test_scores = [78, 85, 92, 85, 90]
median_score = statistics.median(test_scores)
print(f"Median test score: {median_score}")  # Median test score: 85

3. statistics.mode(data)

Returns the single most common data point (mode).

python

# Example 1: Basic mode calculation
colors = ['red', 'blue', 'blue', 'green', 'red', 'blue']
common_color = statistics.mode(colors)
print(f"Most common color: {common_color}")  # Most common color: blue

# Example 2: Mode of numeric data
dice_rolls = [1, 2, 3, 4, 4, 4, 5, 6]
common_roll = statistics.mode(dice_rolls)
print(f"Most common dice roll: {common_roll}")  # Most common dice roll: 4

# Example 3: No unique mode (raises error)
try:
    numbers = [1, 2, 2, 3, 3]
    print(statistics.mode(numbers))
except statistics.StatisticsError as e:
    print(f"Error: {e}")  # Error: no unique mode; found 2 equally common values

4. statistics.median_low() and statistics.median_high()

Alternative median calculations for even-sized datasets.

python

# Example 1: median_low vs median_high
values = [1, 3, 5, 7]
print(f"Low median: {statistics.median_low(values)}")  # Low median: 3
print(f"High median: {statistics.median_high(values)}")  # High median: 5

# Example 2: Comparing with regular median
print(f"Regular median: {statistics.median(values)}")  # Regular median: 4.0

# Example 3: With odd-sized dataset (all medians same)
odd_values = [1, 3, 5]
print(f"All medians same: {statistics.median(odd_values) == statistics.median_low(odd_values) == statistics.median_high(odd_values)}")
# All medians same: True

Measures of Spread

5. statistics.stdev(data, xbar=None)

Calculates the sample standard deviation.

python

# Example 1: Basic standard deviation
heights = [170, 175, 168, 172, 180]
std_dev = statistics.stdev(heights)
print(f"Standard deviation of heights: {std_dev:.2f} cm")  # ~4.15 cm

# Example 2: Comparing two datasets
group1 = [85, 90, 78, 92, 88]
group2 = [70, 95, 82, 93, 85]
print(f"Group 1 stddev: {statistics.stdev(group1):.2f}")  # ~5.50
print(f"Group 2 stddev: {statistics.stdev(group2):.2f}")  # ~9.19

# Example 3: With pre-calculated mean
temps = [22.5, 23.0, 21.8, 24.2, 22.0]
mean_temp = statistics.mean(temps)
std_temp = statistics.stdev(temps, mean_temp)
print(f"Temperature stddev: {std_temp:.2f}°C")  # ~0.92°C

6. statistics.variance(data, xbar=None)

Calculates the sample variance.

python

# Example 1: Basic variance
returns = [0.05, 0.02, -0.01, 0.03, 0.01]
var = statistics.variance(returns)
print(f"Variance of returns: {var:.6f}")  # ~0.000567

# Example 2: Variance vs standard deviation
data = [10, 12, 14, 16, 18]
print(f"Variance: {statistics.variance(data)}")  # 10.0
print(f"Stddev: {statistics.stdev(data)}")       # 3.162...

# Example 3: Financial application
portfolio = [15000, 18200, 17500, 19100, 16800]
print(f"Portfolio variance: {statistics.variance(portfolio):.2f}")
# Portfolio variance: 16937000.00

7. statistics.quantiles(data, *, n=4)

Divides data into intervals with equal probability.

python

# Example 1: Quartiles (default)
scores = [65, 72, 78, 81, 85, 88, 92, 95]
quartiles = statistics.quantiles(scores)
print(f"Quartiles: {quartiles}")  # [72.75, 83.0, 89.0]

# Example 2: Deciles (n=10)
deciles = statistics.quantiles(scores, n=10)
print(f"First decile: {deciles[0]:.1f}")  # First decile: 68.4

# Example 3: Percentiles (n=100)
percentiles = statistics.quantiles(scores, n=100)
print(f"90th percentile: {percentiles[89]:.1f}")  # 90th percentile: 93.8

Advanced Statistics

8. statistics.correlation(x, y)

Calculates Pearson’s correlation coefficient.

python

# Example 1: Positive correlation
x = [1, 2, 3, 4, 5]
y = [2, 4, 6, 8, 10]
print(f"Correlation: {statistics.correlation(x, y)}")  # 1.0

# Example 2: Negative correlation
a = [10, 8, 6, 4, 2]
b = [1, 2, 3, 4, 5]
print(f"Correlation: {statistics.correlation(a, b)}")  # -1.0

# Example 3: No correlation
c = [1, 2, 3, 4, 5]
d = [5, 1, 4, 2, 3]
print(f"Correlation: {statistics.correlation(c, d):.2f}")  # ~-0.30

9. statistics.linear_regression(x, y)

Calculates a linear regression.

python

# Example 1: Perfect linear relationship
x = [1, 2, 3, 4, 5]
y = [3, 5, 7, 9, 11]
slope, intercept = statistics.linear_regression(x, y)
print(f"y = {slope:.2f}x + {intercept:.2f}")  # y = 2.00x + 1.00

# Example 2: Predicting values
study_hours = [2, 4, 6, 8, 10]
test_scores = [65, 80, 85, 90, 95]
slope, intercept = statistics.linear_regression(study_hours, test_scores)
predicted = slope * 7 + intercept
print(f"Predicted score for 7 hours: {predicted:.1f}")  # ~87.5

# Example 3: With proportional relationship
a = [10, 20, 30, 40, 50]
b = [5, 10, 15, 20, 25]
slope, intercept = statistics.linear_regression(a, b)
print(f"Slope: {slope:.2f}, Intercept: {intercept:.2f}")  # Slope: 0.50, Intercept: 0.00

Handling Data

10. statistics.harmonic_mean(data)

Calculates the harmonic mean.

python

# Example 1: Speed calculation
speeds = [60, 40]  # 60 km/h one way, 40 km/h return
h_mean = statistics.harmonic_mean(speeds)
print(f"Average speed: {h_mean:.1f} km/h")  # 48.0 km/h

# Example 2: Financial ratios
ratios = [1.2, 1.5, 2.0]
print(f"Harmonic mean of ratios: {statistics.harmonic_mean(ratios):.2f}")  # ~1.43

# Example 3: Electrical resistance
resistances = [10, 20, 30]  # Parallel resistors
total_r = statistics.harmonic_mean(resistances) / len(resistances)
print(f"Total resistance: {total_r:.2f} ohms")  # 5.45 ohms

11. statistics.geometric_mean(data)

Calculates the geometric mean.

python

# Example 1: Growth rates
growth_rates = [1.1, 1.2, 1.15]  # 10%, 20%, 15% growth
g_mean = statistics.geometric_mean(growth_rates)
print(f"Average growth rate: {(g_mean-1)*100:.2f}%")  # ~14.89%

# Example 2: Investment returns
returns = [1.05, 1.02, 0.98, 1.10]  # 5%, 2%, -2%, 10%
print(f"Geometric mean return: {statistics.geometric_mean(returns):.4f}")  # ~1.0366

# Example 3: Aspect ratios
ratios = [16/9, 4/3, 1/1]
print(f"Average aspect ratio: {statistics.geometric_mean(ratios):.2f}")  # ~1.33

Multimodal Data

12. statistics.multimode(data)

Returns a list of the most frequently occurring values.

python

# Example 1: Multiple modes
grades = ['A', 'B', 'A', 'C', 'B', 'B']
print(f"Most common grades: {statistics.multimode(grades)}")  # ['B']

# Example 2: Multiple modes
colors = ['red', 'blue', 'blue', 'green', 'red']
print(f"Most common colors: {statistics.multimode(colors)}")  # ['red', 'blue']

# Example 3: All unique (no mode)
unique = [1, 2, 3, 4]
print(f"Multimode of unique values: {statistics.multimode(unique)}")  # [1, 2, 3, 4]

Working with Fractions

13. statistics.fmean(data)

Faster floating-point arithmetic mean.

python

# Example 1: Basic fmean
values = [0.1, 0.2, 0.3, 0.4]
print(f"Floating-point mean: {statistics.fmean(values)}")  # 0.25

# Example 2: Large dataset
big_data = range(1, 1000001)
print(f"Mean of big data: {statistics.fmean(big_data)}")  # 500000.5

# Example 3: Mixed types
mixed = [1, 2.5, 3, 4.75]
print(f"Mean of mixed types: {statistics.fmean(mixed)}")  # 2.8125

14. statistics.pstdev(data, mu=None) and statistics.pvariance(data, mu=None)

Population standard deviation and variance.

python

# Example 1: Population vs sample
data = [10, 12, 14, 16, 18]
print(f"Sample variance: {statistics.variance(data)}")  # 10.0
print(f"Population variance: {statistics.pvariance(data)}")  # 8.0

# Example 2: With known mean
mu = statistics.mean(data)
print(f"Population stddev: {statistics.pstdev(data, mu)}")  # ~2.828

# Example 3: Complete population
ages = [22, 23, 22, 25, 23]  # All employees
print(f"Population variance of ages: {statistics.pvariance(ages):.2f}")  # 1.36

The statistics module is particularly useful for basic statistical analysis without requiring external dependencies like NumPy. For more advanced statistical operations, consider libraries like NumPy, SciPy, or pandas.

Find Longest List

lists = [[1, 2, 3], [1, 1, 1, 1, 1], [2, 2, 3, 3]]

max_list = max(lists, key=length)

print(‘Longest List:’, max_list)

1. max() – Find the largest item

python

# Basic usage
numbers = [3, 1, 4, 1, 5, 9, 2]
print(max(numbers))  # Output: 9

# With key function
words = ["apple", "banana", "cherry"]
print(max(words, key=len))  # Output: "banana"

# With multiple iterables
print(max(5, 10, 15))  # Output: 15

2. min() – Find the smallest item (counterpart to max)

python

print(min(numbers))  # Output: 1
print(min(words, key=len))  # Output: "apple"
print(min(5, 10, 15))  # Output: 5

3. sorted() – Return sorted list (often used with max/min)

python

# Get top 3 values
print(sorted(numbers, reverse=True)[:3])  # Output: [9, 5, 4]

# With key function
print(sorted(words, key=len, reverse=True))  # Output: ['banana', 'apple', 'cherry']

4. reversed() – Reverse iterator (useful with max/min)

python

# Get max in reversed order
print(max(reversed(numbers)))  # Output: 2 (last item is max when reversed)

5. heapq.nlargest()/nsmallest() – Efficient for large datasets

python

import heapq

# Get 3 largest numbers
print(heapq.nlargest(3, numbers))  # Output: [9, 5, 4]

# With key function
print(heapq.nsmallest(2, words, key=len))  # Output: ['apple', 'cherry']

6. all() – Check if all items are truthy (often used with max conditions)

python

# Check if all numbers are below threshold
print(all(x < 10 for x in numbers))  # Output: True

7. any() – Check if any item is truthy (often used with min conditions)

python

# Check if any number exceeds threshold
print(any(x > 5 for x in numbers))  # Output: True

8. sum() – Sum of items (often combined with max/min)

python

# Sum of top 3 numbers
print(sum(sorted(numbers, reverse=True)[:3]))  # Output: 18

9. map() – Apply function (often used with max key)

python

# Using map instead of key function
print(max(words, key=lambda x: len(x)))  # Equivalent to:
print(max(map(len, words)))  # Output: 6 (just the length)

10. filter() – Filter items (often before max/min)

python

# Get max even number
print(max(filter(lambda x: x % 2 == 0, numbers)))  # Output: 4

11. zip() – Combine iterables (for multi-criteria max)

python

# Find word with max length and highest ASCII value
lengths = map(len, words)
ascii_sums = [sum(ord(c) for c in w) for w in words]
print(words[max(zip(lengths, ascii_sums, range(len(words))))[2]])  # Output: "banana"

12. enumerate() – Add counter (to get index of max)

python

# Get index of maximum value
max_index = max(enumerate(numbers), key=lambda x: x[1])[0]
print(f"Max value {numbers[max_index]} at index {max_index}")  # Output: Max value 9 at index 5

These built-ins are particularly powerful when combined:

python

# Most common word (using max with count)
words = ["apple", "banana", "apple", "cherry", "banana", "apple"]
print(max(set(words), key=words.count))  # Output: "apple"

# Longest word containing 'a'
print(max([w for w in words if 'a' in w], key=len))  # Output: "banana"

Similar Posts

  • Examples of Python Exceptions

    Comprehensive Examples of Python Exceptions Here are examples of common Python exceptions with simple programs: 1. SyntaxError 2. IndentationError 3. NameError 4. TypeError 5. ValueError 6. IndexError 7. KeyError 8. ZeroDivisionError 9. FileNotFoundError 10. PermissionError 11. ImportError 12. AttributeError 13. RuntimeError 14. RecursionError 15. KeyboardInterrupt 16. MemoryError 17. OverflowError 18. StopIteration 19. AssertionError 20. UnboundLocalError…

  • Generators in Python

    Generators in Python What is a Generator? A generator is a special type of iterator that allows you to iterate over a sequence of values without storing them all in memory at once. Generators generate values on-the-fly (lazy evaluation) using the yield keyword. Key Characteristics Basic Syntax python def generator_function(): yield value1 yield value2 yield value3 Simple Examples Example…

  • Date/Time Objects

    Creating and Manipulating Date/Time Objects in Python 1. Creating Date and Time Objects Creating Date Objects python from datetime import date, time, datetime # Create date objects date1 = date(2023, 12, 25) # Christmas 2023 date2 = date(2024, 1, 1) # New Year 2024 date3 = date(2023, 6, 15) # Random date print(“Date Objects:”) print(f”Christmas:…

  • How to Use Python’s Print Function and Avoid Syntax and Indentation Errors

    1. Print Output to Console and String Manipulation Tips for the print() Function What is the print() Function? The print() function in Python is used to display output to the console. It is one of the most commonly used functions, especially for debugging and displaying results. Basic Usage Output: String Manipulation Tips for print() 1….

  • Positional-Only Arguments in Python

    Positional-Only Arguments in Python Positional-only arguments are function parameters that must be passed by position (order) and cannot be passed by keyword name. Syntax Use the / symbol in the function definition to indicate that all parameters before it are positional-only: python def function_name(param1, param2, /, param3, param4): # function body Simple Examples Example 1: Basic Positional-Only Arguments python def calculate_area(length,…

  • difference between positional and keyword arguments

    1. Positional Arguments How they work: The arguments you pass are matched to the function’s parameters based solely on their order (i.e., their position). The first argument is assigned to the first parameter, the second to the second, and so on. Example: python def describe_pet(animal_type, pet_name): “””Display information about a pet.””” print(f”\nI have a {animal_type}.”) print(f”My {animal_type}’s name…

Leave a Reply

Your email address will not be published. Required fields are marked *