What is list

In Python, a list is a built-in data structure that represents an ordered, mutable (changeable), and heterogeneous (can contain different data types) collection of elements. Lists are one of the most commonly used data structures in Python due to their flexibility and dynamic nature.

Definition of a List in Python:

  • A list is an ordered sequence of elements.
  • Elements can be of different data types (e.g., integers, strings, other lists).
  • Lists are mutable (can be modified after creation).
  • Lists are represented by square brackets [] with elements separated by commas.

Example:

python

my_list = [1, "hello", 3.14, [5, 6, 7]]

How Lists are Represented in Memory

In Python, lists are implemented as dynamic arrays. This means:

  1. Contiguous Memory Allocation: Lists store elements in contiguous memory locations for efficient indexing.
  2. Dynamic Resizing: When a list grows beyond its current capacity, Python dynamically allocates a larger block of memory and copies the elements.
  3. References to Objects: Since Python lists can store different data types, they actually store references (pointers) to objects rather than the objects themselves.

Memory Representation Example:

Consider the list:

python

lst = [10, "hello", 3.14]

In memory, it may look like this:

IndexMemory AddressStored Value (Reference)Actual Object
00x1000→ 0x200010 (int)
10x1004→ 0x3000"hello" (str)
20x1008→ 0x40003.14 (float)
  • The list itself stores pointers to the actual objects.
  • The objects can be stored anywhere in memory, but the list maintains an ordered sequence of references.

Key Points About List Memory Representation:

  1. Dynamic Resizing:
    • Python lists start with some initial capacity.
    • When the list grows beyond this capacity, Python allocates a new, larger memory block (usually with extra space to reduce frequent resizing).
    • The growth factor is typically around 1.125x to 2x (implementation-dependent).
  2. Time Complexity:
    • Accessing an element (lst[i])O(1) (due to indexing).
    • Appending (lst.append(x))O(1) (amortized, since occasional resizing occurs).
    • Inserting (lst.insert(i, x))O(n) (requires shifting elements).
    • Deleting (del lst[i])O(n) (requires shifting elements).
  3. Memory Overhead:
    • Lists consume extra memory to store references and maintain dynamic resizing.
    • For large homogeneous data, array.array or numpy.ndarray may be more memory-efficient.

Example: List Memory Allocation

python

import sys

lst = [1, 2, 3]
print(sys.getsizeof(lst))  # Output: ~88 bytes (overhead for small list)

lst.append(4)  # May trigger resizing
print(sys.getsizeof(lst))  # New size (e.g., 120 bytes)

Conclusion

  • Lists in Python are dynamic arrays that store references to objects.
  • They allow fast indexing (O(1)) but may require resizing when growing.
  • Memory usage is higher than fixed-size arrays due to dynamic allocation.

Similar Posts

  • append(), extend(), and insert() methods in Python lists

    append(), extend(), and insert() methods in Python lists, along with slicing where applicable. 1. append() Method Adds a single element to the end of the list. Examples: 2. extend() Method Adds multiple elements (iterable items) to the end of the list. Examples: 3. insert() Method Inserts an element at a specific position. Examples: Key Differences: Method Modifies List? Adds Single/Multiple Elements? Position append() ✅ Yes Single element (even if it’s a list) End…

  • Combined Character Classes

    Combined Character Classes Explained with Examples 1. [a-zA-Z0-9_] – Word characters (same as \w) Description: Matches any letter (lowercase or uppercase), any digit, or underscore Example 1: Extract all word characters from text python import re text = “User_name123! Email: test@example.com” result = re.findall(r'[a-zA-Z0-9_]’, text) print(result) # [‘U’, ‘s’, ‘e’, ‘r’, ‘_’, ‘n’, ‘a’, ‘m’, ‘e’, ‘1’, ‘2’,…

  • Python timedelta Explained

    Python timedelta Explained timedelta is a class in Python’s datetime module that represents a duration – the difference between two dates or times. It’s incredibly useful for date and time arithmetic. Importing timedelta python from datetime import timedelta, datetime, date Basic Syntax python timedelta(days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0, weeks=0) Examples 1. Basic timedelta Creation python from datetime…

  • Linear vs. Scalar,Homogeneous vs. Heterogeneous 

    Linear vs. Scalar Data Types in Python In programming, data types can be categorized based on how they store and organize data. Two important classifications are scalar (atomic) types and linear (compound) types. 1. Scalar (Atomic) Data Types 2. Linear (Compound/Sequential) Data Types Key Differences Between Scalar and Linear Data Types Feature Scalar (Atomic) Linear (Compound) Stores Single…

  • Positional-Only Arguments in Python

    Positional-Only Arguments in Python Positional-only arguments are function parameters that must be passed by position (order) and cannot be passed by keyword name. Syntax Use the / symbol in the function definition to indicate that all parameters before it are positional-only: python def function_name(param1, param2, /, param3, param4): # function body Simple Examples Example 1: Basic Positional-Only Arguments python def calculate_area(length,…

  •  Duck Typing

    Python, Polymorphism allows us to use a single interface (like a function or a method) for objects of different types. Duck Typing is a specific style of polymorphism common in dynamically-typed languages like Python. What is Duck Typing? 🦆 The name comes from the saying: “If it walks like a duck and it quacks like…

Leave a Reply

Your email address will not be published. Required fields are marked *